Arnold-Cat-Map
Sat 17 May 2025
from bokeh.plotting import figure, output_file, show
from bokeh.io import output_notebook
from bokeh.models import ColumnDataSource
# Set Bokeh output to notebook
output_notebook()
import numpy as np
from bokeh.plotting import figure, show
# Parameters for the Cat Map
a = 1
b = 1
m = 100 # Size of the grid
# Number of iterations and initial conditions
num_points = 10000
x0, y0 = 10, 20 # Initial position
# Generate points for Arnold's Cat Map
x, y = [x0], [y0]
for _ in range(num_points - 1):
x_new = (x[-1] + y[-1]) % m
y_new = (x[-1] + a * y[-1]) % m
x.append(x_new)
y.append(y_new)
# Scale the values for visualization
x = np.array(x) / m
y = np.array(y) / m
# Split data into segments for multi-line
num_segments = 7
xs = np.array_split(x, num_segments)
ys = np.array_split(y, num_segments)
# Define a color palette
colors = ["#FFFFCC", "#A1DAB4", "#41B6C4", "#2C7FB8", "#253494", "#1D91C0", "#225EA8"]
# Create the Bokeh figure
p = figure(title="Arnold's Cat Map Visualization",
background_fill_color="#f9f9f9",
x_axis_label="X",
y_axis_label="Y",
match_aspect=True)
# Add the multi_line glyph
p.multi_line(xs=xs, ys=ys, line_color=colors, line_alpha=0.8, line_width=1.5)
# Show the plot
show(p)
Score: 5
Category: bokeh