Argsmax

Sat 17 May 2025
import numpy as np
a = np.array(
    [
        [1,2,44,7], 
        [9,88,6,45], 
        [19,76,3,4]
    ]
)
a
array([[ 1,  2, 44,  7],
       [ 9, 88,  6, 45],
       [19, 76,  3,  4]])
a.size
12
a.shape
(3, 4)
a.ndim
2
np.argmax(a)
5
a.flatten()
array([ 1,  2, 44,  7,  9, 88,  6, 45, 19, 76,  3,  4])

Note:

argmax Returns the indices of the maximum values along an axis.

The np.argmax function by default works along the flattened array, unless you specify an axis

np.argmin(a) # returns the index of the minimum value
0
np.argmax(a, axis=0) # index of numbers 19, 88, 44, 45
array([2, 1, 0, 1])

Note

np.argmax(a, axis=0) returns the index of the maximum value in each of the four columns.

np.argmax(a, axis=1)
array([2, 1, 1])

Note:

That means np.argmax(a, axis=1) returns 2,1,1 because a has three rows. The index of the maximum value in the first row is 2 (44), the index of the maximum value of the second and third rows is 1 (88, 76)

b = np.array(
    [
        [2, 4], 
        [5, 3] 

    ]
)
b
array([[2, 4],
       [5, 3]])
b.size
4
b.shape
(2, 2)
b.flatten()
array([2, 4, 5, 3])
np.argmax(b)
2
np.argmax(b, axis=0)
array([1, 0])
np.argmax(b, axis=1)
array([1, 0])

https://stackoverflow.com/questions/28697993/numpy-what-is-the-logic-of-the-argmin-and-argmax-functions



Score: 20

Category: numpy


Array-Inverse

Sat 17 May 2025
import numpy as np
a = np.array([
    [1, 2],
    [3, 4]
])
a
array([[1, 2],
       [3, 4]])
inverse_a = np.linalg.inv(a)
print(inverse_a)
[[-2.   1. ]
 [ 1.5 -0.5]]


Score: 5

Category: numpy

Read More
Page 1 of 1