Food Points
title: "Food Points"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
import numpy as np
import pandas as pd
data = {
'dinner' : ['chicken wrap', 'stake', 'rudy burger', 'sushi', 'chicken teriyaki', 'caesar salad']
}
Read More
Gruopby Date
title: "Groupby Date"
author: "Rj"
date: 2019-04-20
description: "List Test"
type: technical_note
draft: false
from datetime import datetime
import pandas as pd
data = {
'date' : [
'2019-05-01 19:47:05.069722',
'2019-05-02 17:47:05.069722',
'2019-05-02 19:47:05.069722',
'2019-05-03 18:47:05.069722',
'2019-05-03 19:47:05.069722',
],
'spent …
Read More
If-Else-Pandas
title: "If Else Pandas"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
source: http://pandas.pydata.org/pandas-docs/version/0.24/user_guide/cookbook.html#idioms
import numpy as np
import pandas as pd
df = pd.DataFrame({
'maths' : [80, 89, 90, 20],
'science' : [40, 50, 90, 100],
'language' : [20, 30 …
Read More
If Then
title: "Template"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
source: http://pandas.pydata.org/pandas-docs/version/0.24/user_guide/cookbook.html#idioms
import numpy as np
import pandas as pd
df = pd.read_csv('abc.csv')
Read More
Iloc
title: "iLoc Simple"
author: "Rj"
date: 2019-04-20
description: "-"
type: technical_note
draft: false
df = pd.read_csv('data1.csv', sep=',', header=None)
|
0 |
1 |
2 |
| 0 |
capacity |
score |
length … |
Read More
Iloc-Position-Slice
title: "iLoc Position Slice"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
import numpy as np
import pandas as pd
df = pd.read_csv('data1.csv')
|
capacity |
score |
length |
| 0 |
1 … |
Read More
Index Isin
title: "Index isin"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
source: http://pandas.pydata.org/pandas-docs/version/0.24/user_guide/cookbook.html#idioms
import numpy as np
import pandas as pd
df = pd.DataFrame({
'maths' : [80, 89, 90, 20, 60],
'science' : [40, 50, 90, 100, 50],
'language' : [20 …
Read More
Infer Objects
title: "Infer Objects"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
import numpy as np
import pandas as pd
df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1']}, dtype='object')
Read More
Initialize With Datatype
title: "Initalize With DataType"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
import numpy as np
import pandas as pd
df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1']}, dtype='object')
Read More
Int And Nan
title: "Int and NaN"
author: "Rj"
date: 2019-04-24
description: "-"
type: technical_note
draft: false
import numpy as np
import pandas as pd
df = pd.DataFrame({
'one': [4, 5],
'two': [10, 20]
})
Read More