Access-Local-Kaggle-Dataset

Fri 14 November 2025

import pandas as pd
df = pd.read_csv('~/datasets/kaggle/kc_house_data.csv')
df.head()
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront view ... grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 …

Category: kaggle

Read More

Accuracy-Score

Fri 14 November 2025

title: "Accuracy Score" author: "Rj" date: 2019-04-20 description: "-" type: technical_note draft: false


import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
score1 = accuracy_score(y_true, y_pred)    
print(score1)
0.5
score2 = accuracy_score(y_true, y_pred, normalize=False)
print(score2)
2


Score: 5 …

Category: sklearn

Read More

Acrony-Finder-Spacy

Fri 14 November 2025

# !pip install spacy
import spacy
spacy.__version__
'3.8.2'
# !python -m spacy download en_core_web_sm
import re
# Load the spaCy model
nlp = spacy.load("en_core_web_sm")
# Sample text
text = "California Xgb is a great tool for machine learning. Another example is AI. \
NTLK is very slow and not recommended high speed …

Category: spacy

Read More

Add A New Column

Fri 14 November 2025

title: "Add a New Column" author: "Rj" date: 2019-04-20 description: "List Test" type: technical_note draft: false


import pandas as pd
data = {
    'city' : ['Toronto', 'Montreal', 'Waterloo'],
    'points' : [80, 70, 90]
}
data
{'city': ['Toronto', 'Montreal', 'Waterloo'], 'points': [80, 70, 90]}
type(data)
dict
df = pd.DataFrame(data)
df

Category: data-wrangling

Read More

Add-A-New-Column-1

Fri 14 November 2025

Add a New Column

import pandas as pd
data = {
    'city' : ['Toronto', 'Montreal', 'Waterloo'],
    'points' : [80, 70, 90]
}
data
{'city': ['Toronto', 'Montreal', 'Waterloo'], 'points': [80, 70, 90]}
type(data)
dict
df = pd.DataFrame(data)
df

Category: pandas

Read More

Add-Even-Indices

Fri 14 November 2025
from numba import njit, prange
import numpy as np
@njit(parallel=True)
def add_even_indices(A):
    s = 0
    # Without "parallel=True" in the jit-decorator
    # the prange statement is equivalent to range
    for i in prange(A.shape[0]):
        if(i % 2 == 0):
            s += A[i]
    return s
abc = add_even_indices(np.array …

Category: numba

Read More

Add-Even-Numbers

Fri 14 November 2025
from numba import njit, prange
import numpy as np
@njit(parallel=True)
def add_even_numbers(A):
    s = 0
    # Without "parallel=True" in the jit-decorator
    # the prange statement is equivalent to range
    for i in prange(A.shape[0]):
        if(A[i] % 2 == 0):
            s += A[i]
    return s
abc = add_even_numbers(np …

Category: numba

Read More

Add-Method

Fri 14 November 2025

title: "Add Method" author: "Raja CSP Raman" date: 2019-05-07 description: "-" type: technical_note draft: false


import tensorflow as tf

import os

# Just disables the warning, doesn't enable AVX/FMA
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
a = tf.Variable(0)
b = tf.constant(1)
c = tf.add(a, b)
c
<tf.Tensor 'Add_2 …

Category: tensorflow-work

Read More

Add-Padding-Around-String

Fri 14 November 2025

Create Some Text

text = 'Chapter 2'

Add Padding Around Text

# Add Spaces Of Padding To The Left
format(text, '>20')
'           Chapter 2'
# Add Spaces Of Padding To The Right
format(text, '<20')
'Chapter 2           '
# Add Spaces Of Padding On Each Side
format(text, '^20')
'     Chapter 2      '
# Add * Of Padding On …

Category: basics

Read More

Address-Analysis-With-Hf

Fri 14 November 2025
# !pip install datasets
from transformers import AutoModelForTokenClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load data
dataset = load_dataset("json", data_files="train_data.json")
Generating train split: 0 examples [00:00, ? examples/s]
dataset
DatasetDict({
    train: Dataset({
        features: ['text', 'entities'],
        num_rows: 1
    })
})
# Load model and tokenizer
# model = AutoModelForTokenClassification.from_pretrained("urchade/gliner_medium-v2.1 …

Category: gliner

Read More
Page 84 of 146

« Prev Next »