Accuracy-Score
title: "Accuracy Score"
author: "Rj"
date: 2019-04-20
description: "-"
type: technical_note
draft: false
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
score1 = accuracy_score(y_true, y_pred)
print(score1)
score2 = accuracy_score(y_true, y_pred, normalize=False)
print(score2)
Score: 5 …
Read More
Add A New Column
title: "Add a New Column"
author: "Rj"
date: 2019-04-20
description: "List Test"
type: technical_note
draft: false
data = {
'city' : ['Toronto', 'Montreal', 'Waterloo'],
'points' : [80, 70, 90]
}
{'city': ['Toronto', 'Montreal', 'Waterloo'], 'points': [80, 70, 90]}
Read More
Add-A-New-Column-1
Add a New Column
data = {
'city' : ['Toronto', 'Montreal', 'Waterloo'],
'points' : [80, 70, 90]
}
{'city': ['Toronto', 'Montreal', 'Waterloo'], 'points': [80, 70, 90]}
Read More
Address-Analysis-With-Hf
from transformers import AutoModelForTokenClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load data
dataset = load_dataset("json", data_files="train_data.json")
Generating train split: 0 examples [00:00, ? examples/s]
DatasetDict({
train: Dataset({
features: ['text', 'entities'],
num_rows: 1
})
})
# Load model and tokenizer
# model = AutoModelForTokenClassification.from_pretrained("urchade/gliner_medium-v2.1 …
Read More