06-Average-True-Range-Bands

Sat 17 May 2025
# Created: 20250103
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct  4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("requests"))
requests==2.32.3

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt

# Step 1: Download historical data
symbol = "^GSPC"  # S&P 500 as an example
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)

# Step 2: Calculate ATR Bands
def atr_bands(data, atr_window=14, sma_window=20, multiplier=2):
    # Calculate True Range (TR)
    data['High-Low'] = data['High'] - data['Low']
    data['High-Close'] = abs(data['High'] - data['Close'].shift(1))
    data['Low-Close'] = abs(data['Low'] - data['Close'].shift(1))
    data['True Range'] = data[['High-Low', 'High-Close', 'Low-Close']].max(axis=1)

    # Calculate ATR
    data['ATR'] = data['True Range'].rolling(window=atr_window).mean()

    # Calculate SMA (Middle Line)
    data['SMA'] = data['Close'].rolling(window=sma_window).mean()

    # Calculate Upper and Lower Bands
    data['Upper Band'] = data['SMA'] + (multiplier * data['ATR'])
    data['Lower Band'] = data['SMA'] - (multiplier * data['ATR'])

    return data

# Apply the function
data = atr_bands(data)

# Step 3: Plot ATR Bands
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price', color='blue')
plt.plot(data['Upper Band'], label='Upper Band', color='red', linestyle='--')
plt.plot(data['Lower Band'], label='Lower Band', color='green', linestyle='--')
plt.plot(data['SMA'], label='SMA (Middle Line)', color='orange', linestyle='-')
plt.fill_between(data.index, data['Lower Band'], data['Upper Band'], color='gray', alpha=0.2)
plt.title(f'ATR Bands for {symbol}')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(loc='best')
plt.grid(True)
plt.show()
[*********************100%***********************]  1 of 1 completed

png


def show_atr_bands(symbol):

    # Step 1: Download historical data
    start = "2020-01-01"
    end = "2023-12-31"
    data = yf.download(symbol, start=start, end=end)

    # Apply the function
    data = atr_bands(data)

    # Step 3: Plot ATR Bands
    plt.figure(figsize=(14, 7))
    plt.plot(data['Close'], label='Close Price', color='blue')
    plt.plot(data['Upper Band'], label='Upper Band', color='red', linestyle='--')
    plt.plot(data['Lower Band'], label='Lower Band', color='green', linestyle='--')
    plt.plot(data['SMA'], label='SMA (Middle Line)', color='orange', linestyle='-')
    plt.fill_between(data.index, data['Lower Band'], data['Upper Band'], color='gray', alpha=0.2)
    plt.title(f'ATR Bands for {symbol}')
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.legend(loc='best')
    plt.grid(True)
    plt.show()
show_atr_bands("AMZN")
[*********************100%***********************]  1 of 1 completed

png



Score: 5

Category: stockmarket