06-Average-True-Range-Bands
Sat 17 May 2025
# Created: 20250103
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("requests"))
requests==2.32.3
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
# Step 1: Download historical data
symbol = "^GSPC" # S&P 500 as an example
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Step 2: Calculate ATR Bands
def atr_bands(data, atr_window=14, sma_window=20, multiplier=2):
# Calculate True Range (TR)
data['High-Low'] = data['High'] - data['Low']
data['High-Close'] = abs(data['High'] - data['Close'].shift(1))
data['Low-Close'] = abs(data['Low'] - data['Close'].shift(1))
data['True Range'] = data[['High-Low', 'High-Close', 'Low-Close']].max(axis=1)
# Calculate ATR
data['ATR'] = data['True Range'].rolling(window=atr_window).mean()
# Calculate SMA (Middle Line)
data['SMA'] = data['Close'].rolling(window=sma_window).mean()
# Calculate Upper and Lower Bands
data['Upper Band'] = data['SMA'] + (multiplier * data['ATR'])
data['Lower Band'] = data['SMA'] - (multiplier * data['ATR'])
return data
# Apply the function
data = atr_bands(data)
# Step 3: Plot ATR Bands
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price', color='blue')
plt.plot(data['Upper Band'], label='Upper Band', color='red', linestyle='--')
plt.plot(data['Lower Band'], label='Lower Band', color='green', linestyle='--')
plt.plot(data['SMA'], label='SMA (Middle Line)', color='orange', linestyle='-')
plt.fill_between(data.index, data['Lower Band'], data['Upper Band'], color='gray', alpha=0.2)
plt.title(f'ATR Bands for {symbol}')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(loc='best')
plt.grid(True)
plt.show()
[*********************100%***********************] 1 of 1 completed

def show_atr_bands(symbol):
# Step 1: Download historical data
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Apply the function
data = atr_bands(data)
# Step 3: Plot ATR Bands
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price', color='blue')
plt.plot(data['Upper Band'], label='Upper Band', color='red', linestyle='--')
plt.plot(data['Lower Band'], label='Lower Band', color='green', linestyle='--')
plt.plot(data['SMA'], label='SMA (Middle Line)', color='orange', linestyle='-')
plt.fill_between(data.index, data['Lower Band'], data['Upper Band'], color='gray', alpha=0.2)
plt.title(f'ATR Bands for {symbol}')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(loc='best')
plt.grid(True)
plt.show()
show_atr_bands("AMZN")
[*********************100%***********************] 1 of 1 completed

Score: 5
Category: stockmarket