11-Macd
Sat 17 May 2025
# Created: 20250103
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("requests"))
requests==2.32.3
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
# Step 2: Calculate MACD
def calculate_macd(data, short_window=12, long_window=26, signal_window=9):
# Calculate the short-term EMA (12-day)
data['EMA12'] = data['Close'].ewm(span=short_window, adjust=False).mean()
# Calculate the long-term EMA (26-day)
data['EMA26'] = data['Close'].ewm(span=long_window, adjust=False).mean()
# MACD Line
data['MACD'] = data['EMA12'] - data['EMA26']
# Signal Line
data['Signal Line'] = data['MACD'].ewm(span=signal_window, adjust=False).mean()
# MACD Histogram
data['MACD Histogram'] = data['MACD'] - data['Signal Line']
return data
def show_graph(symbol):
# Step 1: Download historical data
start = "2020-01-01"
end = "2024-12-31"
data = yf.download(symbol, start=start, end=end)
# Apply the MACD calculation
data = calculate_macd(data)
# Step 3: Plot MACD
plt.figure(figsize=(14, 10))
# Plot the Close Price
plt.subplot(3, 1, 1)
plt.plot(data['Close'], label='Close Price', color='blue')
plt.title(f'{symbol} Close Price')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
# Plot the MACD Line and Signal Line
plt.subplot(3, 1, 2)
plt.plot(data['MACD'], label='MACD Line', color='blue', linestyle='-')
plt.plot(data['Signal Line'], label='Signal Line', color='red', linestyle='--')
plt.title('MACD and Signal Line')
plt.xlabel('Date')
plt.ylabel('Value')
plt.legend(loc='best')
plt.grid(True)
show_graph("AMZN")
[*********************100%***********************] 1 of 1 completed

Score: 5
Category: stockmarket