16-Williams-R
Sat 17 May 2025
# Created: 20250103
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("requests"))
requests==2.32.3
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Step 2: Calculate Williams %R
def calculate_williams_r(data1, lookback=14):
# Ensure rolling operations return single Series
highest_high = data1['High'].rolling(window=lookback).max()
lowest_low = data1['Low'].rolling(window=lookback).min()
# Calculate Williams %R
data1['Williams %R'] = ((highest_high - data1['Close']) /
(highest_high - lowest_low)) * -100
return data1
def show_graph(symbol):
# Step 1: Download historical data
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Apply the Williams %R calculation
data = calculate_williams_r(data)
# Step 3: Plot Williams %R
plt.figure(figsize=(14, 7))
# Plot Close Price
plt.subplot(2, 1, 1)
plt.plot(data['Close'], label='Close Price', color='blue')
plt.title(f'{symbol} Close Price')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
# Plot Williams %R
plt.subplot(2, 1, 2)
plt.plot(data['Williams %R'], label='Williams %R', color='purple')
plt.axhline(-20, color='red', linestyle='--', label='Overbought (-20)')
plt.axhline(-80, color='green', linestyle='--', label='Oversold (-80)')
plt.title('Williams %R')
plt.xlabel('Date')
plt.ylabel('%R')
plt.legend(loc='best')
plt.grid(True)
plt.tight_layout()
plt.show()
show_graph("AMZN")
[*********************100%***********************] 1 of 1 completed

Score: 5
Category: stockmarket