22-Hull-Moving-Average
Sat 17 May 2025
# Created: 20250103
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("yfinance pandas matplotlib"))
yfinance==0.2.51
pandas==2.2.3
matplotlib==3.9.3
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Step 2: Calculate WMA
def calculate_wma(series, period):
weights = np.arange(1, period + 1)
return series.rolling(period).apply(lambda prices: np.dot(prices, weights) / weights.sum(), raw=True)
# Step 3: Calculate HMA
def calculate_hma(data, period=20):
wma_half_period = calculate_wma(data['Close'], period // 2)
wma_full_period = calculate_wma(data['Close'], period)
intermediate_wma = 2 * wma_half_period - wma_full_period
hma = calculate_wma(intermediate_wma, int(np.sqrt(period)))
data['HMA'] = hma
return data
def show_graph(symbol):
# Step 1: Download historical data
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Apply HMA calculation
period = 20 # You can adjust the period
data = calculate_hma(data, period)
# Step 4: Plot Close Price and HMA
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price', color='blue', alpha=0.6)
plt.plot(data['HMA'], label=f'HMA ({period})', color='green', linewidth=2)
plt.title(f'Hull Moving Average (HMA) for {symbol}')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(loc='best')
plt.grid(True)
plt.show()
show_graph("AMZN")
[*********************100%***********************] 1 of 1 completed

Score: 5
Category: stockmarket