38-Rate-Of-Change
Sat 17 May 2025
# Created: 20250104
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("yfinance pandas matplotlib"))
yfinance==0.2.51
pandas==2.2.3
matplotlib==3.9.3
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Step 2: Calculate Rate of Change (ROC)
def calculate_roc(data, period=14):
data['ROC'] = ((data['Close'] - data['Close'].shift(period)) / data['Close'].shift(period)) * 100
return data
def show_graph(symbol):
# Step 1: Download historical data
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Apply ROC calculation
data = calculate_roc(data)
# Step 3: Plot Close Price and ROC
plt.figure(figsize=(14, 7))
# Plot Close Price
plt.subplot(2, 1, 1)
plt.plot(data['Close'], label='Close Price', color='blue')
plt.title(f'{symbol} Close Price')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
# Plot ROC
plt.subplot(2, 1, 2)
plt.plot(data['ROC'], label='Rate of Change (ROC)', color='purple', linewidth=1.5)
plt.axhline(0, color='black', linestyle='--', linewidth=1, label='Zero Line')
plt.title(f'Rate of Change (ROC) for {symbol}')
plt.xlabel('Date')
plt.ylabel('ROC (%)')
plt.legend(loc='best')
plt.grid(True)
plt.tight_layout()
plt.show()
show_graph("AMZN")
[*********************100%***********************] 1 of 1 completed

Score: 5
Category: stockmarket