44-Pivot-Range
Sat 17 May 2025
# Created: 20250104
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("yfinance pandas matplotlib"))
yfinance==0.2.51
pandas==2.2.3
matplotlib==3.9.3
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
# Step 1: Download historical data
symbol = "^GSPC" # S&P 500 as an example
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Step 2: Calculate Pivot Range
def calculate_pivot_range(data):
data['Pivot Point'] = (data['High'] + data['Low'] + data['Close']) / 3
data['R1'] = 2 * data['Pivot Point'] - data['Low']
data['R2'] = data['Pivot Point'] + (data['High'] - data['Low'])
data['S1'] = 2 * data['Pivot Point'] - data['High']
data['S2'] = data['Pivot Point'] - (data['High'] - data['Low'])
return data
# Apply Pivot Range calculation
data = calculate_pivot_range(data)
# Step 3: Plot Close Price and Pivot Range
plt.figure(figsize=(14, 7))
# Plot Close Price
plt.plot(data['Close'], label='Close Price', color='blue', linewidth=1)
plt.plot(data['Pivot Point'], label='Pivot Point (P)', color='black', linestyle='--')
plt.plot(data['R1'], label='Resistance 1 (R1)', color='green', linestyle='--')
plt.plot(data['R2'], label='Resistance 2 (R2)', color='lime', linestyle='--')
plt.plot(data['S1'], label='Support 1 (S1)', color='red', linestyle='--')
plt.plot(data['S2'], label='Support 2 (S2)', color='orange', linestyle='--')
# Customize the plot
plt.title(f'{symbol} Pivot Range')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(loc='best')
plt.grid(True)
plt.tight_layout()
plt.show()
[*********************100%***********************] 1 of 1 completed
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_1326968/2158972586.py in ?()
17 data['S2'] = data['Pivot Point'] - (data['High'] - data['Low'])
18 return data
19
20 # Apply Pivot Range calculation
---> 21 data = calculate_pivot_range(data)
22
23 # Step 3: Plot Close Price and Pivot Range
24 plt.figure(figsize=(14, 7))
/tmp/ipykernel_1326968/2158972586.py in ?(data)
12 def calculate_pivot_range(data):
13 data['Pivot Point'] = (data['High'] + data['Low'] + data['Close']) / 3
---> 14 data['R1'] = 2 * data['Pivot Point'] - data['Low']
15 data['R2'] = data['Pivot Point'] + (data['High'] - data['Low'])
16 data['S1'] = 2 * data['Pivot Point'] - data['High']
17 data['S2'] = data['Pivot Point'] - (data['High'] - data['Low'])
~/miniconda3/envs/ml312-2024/lib/python3.12/site-packages/pandas/core/frame.py in ?(self, key, value)
4297 self._setitem_frame(key, value)
4298 elif isinstance(key, (Series, np.ndarray, list, Index)):
4299 self._setitem_array(key, value)
4300 elif isinstance(value, DataFrame):
-> 4301 self._set_item_frame_value(key, value)
4302 elif (
4303 is_list_like(value)
4304 and not self.columns.is_unique
~/miniconda3/envs/ml312-2024/lib/python3.12/site-packages/pandas/core/frame.py in ?(self, key, value)
4455
4456 return self.isetitem(locs, value)
4457
4458 if len(value.columns) > 1:
-> 4459 raise ValueError(
4460 "Cannot set a DataFrame with multiple columns to the single "
4461 f"column {key}"
4462 )
ValueError: Cannot set a DataFrame with multiple columns to the single column R1
def show_graph(symbol):
pass
show_graph("AMZN")
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[5], line 1
----> 1 show_graph("AMZN")
NameError: name 'show_graph' is not defined
Score: 5
Category: stockmarket