45-Adaptive-Moving-Average
Sat 17 May 2025
# Created: 20250104
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("yfinance pandas matplotlib"))
yfinance==0.2.51
pandas==2.2.3
matplotlib==3.9.3
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Step 2: Calculate Adaptive Moving Average (AMA)
def calculate_ama(data, period=10, fast_period=2, slow_period=30):
data['Price Change'] = data['Close'].diff(period)
data['Volatility'] = data['Close'].diff().abs().rolling(window=period).sum()
# Efficiency Ratio (ER)
data['ER'] = data['Price Change'].abs() / data['Volatility']
# Smoothing Constant (SC)
fast_sc = 2 / (fast_period + 1)
slow_sc = 2 / (slow_period + 1)
data['SC'] = (data['ER'] * (fast_sc - slow_sc) + slow_sc) ** 2
# Calculate AMA
data['AMA'] = data['Close'].copy() # Initialize AMA with Close
for i in range(1, len(data)):
data.loc[data.index[i], 'AMA'] = (
data['AMA'].iloc[i - 1] +
data['SC'].iloc[i] * (data['Close'].iloc[i] - data['AMA'].iloc[i - 1])
)
return data
[*********************100%***********************] 1 of 1 completed

def show_graph(symbol):
# Step 1: Download historical data
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Apply AMA calculation
data = calculate_ama(data)
# Step 3: Plot Close Price and AMA
plt.figure(figsize=(14, 7))
# Plot Close Price and AMA
plt.plot(data['Close'], label='Close Price', color='blue', linewidth=1)
plt.plot(data['AMA'], label='Adaptive Moving Average (AMA)', color='red', linewidth=1.5)
# Customize the plot
plt.title(f'{symbol} Adaptive Moving Average (AMA)')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(loc='best')
plt.grid(True)
plt.tight_layout()
plt.show()
show_graph("AMZN")
[*********************100%***********************] 1 of 1 completed

Score: 5
Category: stockmarket