48-Volatality-Stop
Sat 17 May 2025
# Created: 20250104
import pyutil as pyu
pyu.get_local_pyinfo()
'conda env: ml312-2024; pyv: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0]'
print(pyu.ps2("yfinance pandas matplotlib"))
yfinance==0.2.51
pandas==2.2.3
matplotlib==3.9.3
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
# Step 1: Download historical data
symbol = "^GSPC" # S&P 500 as an example
start = "2020-01-01"
end = "2023-12-31"
data = yf.download(symbol, start=start, end=end)
# Step 2: Calculate Volatility Stop
def calculate_volatility_stop(data, atr_period=14, multiplier=3):
# True Range (TR)
data['High-Low'] = data['High'] - data['Low']
data['High-Close'] = abs(data['High'] - data['Close'].shift(1))
data['Low-Close'] = abs(data['Low'] - data['Close'].shift(1))
data['True Range'] = data[['High-Low', 'High-Close', 'Low-Close']].max(axis=1)
# Average True Range (ATR)
data['ATR'] = data['True Range'].rolling(window=atr_period).mean()
# Determine trend direction
data['Trend'] = (data['Close'] > data['Close'].shift(1)).astype(int) # 1 for uptrend, 0 for downtrend
# Calculate Volatility Stop
data['Volatility Stop'] = data['Close'] - multiplier * data['ATR']
data.loc[data['Trend'] == 0, 'Volatility Stop'] = data['Close'] + multiplier * data['ATR']
return data
# Apply Volatility Stop calculation
data = calculate_volatility_stop(data)
# Step 3: Plot Close Price and Volatility Stop
plt.figure(figsize=(14, 7))
# Plot Close Price
plt.plot(data['Close'], label='Close Price', color='blue', linewidth=1)
# Plot Volatility Stop
plt.plot(data['Volatility Stop'], label='Volatility Stop', color='red', linestyle='--', linewidth=1.5)
# Customize the plot
plt.title(f'{symbol} Volatility Stop (ATR Period: 14, Multiplier: 3)')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(loc='best')
plt.grid(True)
plt.tight_layout()
plt.show()
[*********************100%***********************] 1 of 1 completed
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_1338088/2777029421.py in ?()
28
29 return data
30
31 # Apply Volatility Stop calculation
---> 32 data = calculate_volatility_stop(data)
33
34 # Step 3: Plot Close Price and Volatility Stop
35 plt.figure(figsize=(14, 7))
/tmp/ipykernel_1338088/2777029421.py in ?(data, atr_period, multiplier)
22 # Determine trend direction
23 data['Trend'] = (data['Close'] > data['Close'].shift(1)).astype(int) # 1 for uptrend, 0 for downtrend
24
25 # Calculate Volatility Stop
---> 26 data['Volatility Stop'] = data['Close'] - multiplier * data['ATR']
27 data.loc[data['Trend'] == 0, 'Volatility Stop'] = data['Close'] + multiplier * data['ATR']
28
29 return data
~/miniconda3/envs/ml312-2024/lib/python3.12/site-packages/pandas/core/frame.py in ?(self, key, value)
4297 self._setitem_frame(key, value)
4298 elif isinstance(key, (Series, np.ndarray, list, Index)):
4299 self._setitem_array(key, value)
4300 elif isinstance(value, DataFrame):
-> 4301 self._set_item_frame_value(key, value)
4302 elif (
4303 is_list_like(value)
4304 and not self.columns.is_unique
~/miniconda3/envs/ml312-2024/lib/python3.12/site-packages/pandas/core/frame.py in ?(self, key, value)
4455
4456 return self.isetitem(locs, value)
4457
4458 if len(value.columns) > 1:
-> 4459 raise ValueError(
4460 "Cannot set a DataFrame with multiple columns to the single "
4461 f"column {key}"
4462 )
ValueError: Cannot set a DataFrame with multiple columns to the single column Volatility Stop
def show_graph(symbol):
pass
show_graph("AMZN")
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[5], line 1
----> 1 show_graph("AMZN")
NameError: name 'show_graph' is not defined
Score: 5
Category: stockmarket