Download
Sat 17 May 2025
import os
import pandas as pd
from kaggle.api.kaggle_api_extended import KaggleApi
from io import BytesIO
import zipfile
# Authenticate with Kaggle
api = KaggleApi()
api.authenticate()
!kaggle datasets files zillow/zecon
name size creationDate
---------------------------- ----- -------------------
City_time_series.csv 658MB 2019-09-21 10:26:35
CountyCrossWalk_Zillow.csv 227KB 2019-09-21 10:26:18
County_time_series.csv 108MB 2019-09-21 10:26:21
DataDictionary.csv 5KB 2019-09-21 10:26:18
Metro_time_series.csv 54MB 2019-09-21 10:26:19
Neighborhood_time_series.csv 253MB 2019-09-21 10:26:23
State_time_series.csv 5MB 2019-09-21 10:26:18
Zip_time_series.csv 746MB 2019-09-21 10:26:43
all_available_metrics.json 3KB 2019-09-21 10:26:27
cities_crosswalk.csv 1MB 2019-09-21 10:26:27
fields_per_level.json 17KB 2019-09-21 10:26:27
!kaggle datasets files harlfoxem/housesalesprediction
name size creationDate
----------------- ---- -------------------
kc_house_data.csv 2MB 2017-04-15 05:48:17
# Specify the dataset
dataset_name = 'harlfoxem/housesalesprediction' # Replace with the dataset slug
file_name = 'kc_house_data' # File within the dataset zip
# Download the dataset as a stream
print("Downloading dataset...")
dataset = api.dataset_download_file(dataset_name, file_name=file_name)
Downloading dataset...
Dataset URL: https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
# Open the ZIP file in memory
print("Extracting and processing dataset...")
with zipfile.ZipFile(dataset_path, 'r') as z:
if file_name in z.namelist():
with z.open(file_name) as file:
data = pd.read_csv(file)
print(data.head())
else:
print(f"File {file_name} not found in the dataset!")
Score: 5
Category: kaggle