Parallel-Runnable-2
Sat 17 May 2025
!python --version
Python 3.12.4
from constants import OPENAI_API_KEY
!pip show langchain-openai | grep "Version:"
Version: 0.2.9
import os
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o-mini")
from operator import itemgetter
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
[
"harrison worked at kensho",
"harrison likes spicy food",
"harrison is from Ohio"
],
embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
Answer in the following language: {language}
"""
prompt = ChatPromptTemplate.from_template(template)
chain = (
{
"context": itemgetter("question") | retriever,
"question": itemgetter("question"),
"language": itemgetter("language"),
}
| prompt
| model
| StrOutputParser()
)
chain.invoke({"question": "where did harrison work", "language": "italian"})
'Harrison ha lavorato a Kensho.'
chain.invoke({"question": "where did harrison work", "language": "tamil"})
'ஹாரிசன் கென்ஷோவில் வேலை செய்தான்.'
chain.invoke({"question": "where is harrison from?", "language": "tamil"})
'ஹாரிசன் ஓஹியோவில் இருந்து வந்தவர்.'
Score: 10
Category: langchain