Simple-Dataframe-For-Statsmodel
Sat 17 May 2025
from __future__ import print_function
import statsmodels.api as sm
import pandas as pd
from patsy import dmatrices
df = sm.datasets.get_rdataset("Guerry", "HistData").data
df.head()
| dept | Region | Department | Crime_pers | Crime_prop | Literacy | Donations | Infants | Suicides | MainCity | ... | Crime_parents | Infanticide | Donation_clergy | Lottery | Desertion | Instruction | Prostitutes | Distance | Area | Pop1831 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | E | Ain | 28870 | 15890 | 37 | 5098 | 33120 | 35039 | 2:Med | ... | 71 | 60 | 69 | 41 | 55 | 46 | 13 | 218.372 | 5762 | 346.03 |
| 1 | 2 | N | Aisne | 26226 | 5521 | 51 | 8901 | 14572 | 12831 | 2:Med | ... | 4 | 82 | 36 | 38 | 82 | 24 | 327 | 65.945 | 7369 | 513.00 |
| 2 | 3 | C | Allier | 26747 | 7925 | 13 | 10973 | 17044 | 114121 | 2:Med | ... | 46 | 42 | 76 | 66 | 16 | 85 | 34 | 161.927 | 7340 | 298.26 |
| 3 | 4 | E | Basses-Alpes | 12935 | 7289 | 46 | 2733 | 23018 | 14238 | 1:Sm | ... | 70 | 12 | 37 | 80 | 32 | 29 | 2 | 351.399 | 6925 | 155.90 |
| 4 | 5 | E | Hautes-Alpes | 17488 | 8174 | 69 | 6962 | 23076 | 16171 | 1:Sm | ... | 22 | 23 | 64 | 79 | 35 | 7 | 1 | 320.280 | 5549 | 129.10 |
5 rows × 23 columns
df.shape
(86, 23)
df.describe()
| dept | Crime_pers | Crime_prop | Literacy | Donations | Infants | Suicides | Wealth | Commerce | Clergy | Crime_parents | Infanticide | Donation_clergy | Lottery | Desertion | Instruction | Prostitutes | Distance | Area | Pop1831 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| count | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 |
| mean | 46.883721 | 19754.406977 | 7843.058140 | 39.255814 | 7075.546512 | 19049.906977 | 36522.604651 | 43.500000 | 42.802326 | 43.430233 | 43.500000 | 43.511628 | 43.500000 | 43.500000 | 43.500000 | 43.127907 | 141.872093 | 207.953140 | 6146.988372 | 378.628721 |
| std | 30.426157 | 7504.703073 | 3051.352839 | 17.364051 | 5834.595216 | 8820.233546 | 31312.532649 | 24.969982 | 25.028370 | 24.999549 | 24.969982 | 24.948297 | 24.969982 | 24.969982 | 24.969982 | 24.799809 | 520.969318 | 109.320837 | 1398.246620 | 148.777230 |
| min | 1.000000 | 2199.000000 | 1368.000000 | 12.000000 | 1246.000000 | 2660.000000 | 3460.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 762.000000 | 129.100000 |
| 25% | 24.250000 | 14156.250000 | 5933.000000 | 25.000000 | 3446.750000 | 14299.750000 | 15463.000000 | 22.250000 | 21.250000 | 22.250000 | 22.250000 | 22.250000 | 22.250000 | 22.250000 | 22.250000 | 23.250000 | 6.000000 | 121.383000 | 5400.750000 | 283.005000 |
| 50% | 45.500000 | 18748.500000 | 7595.000000 | 38.000000 | 5020.000000 | 17141.500000 | 26743.500000 | 43.500000 | 42.500000 | 43.500000 | 43.500000 | 43.500000 | 43.500000 | 43.500000 | 43.500000 | 41.500000 | 33.000000 | 200.616000 | 6070.500000 | 346.165000 |
| 75% | 66.750000 | 25937.500000 | 9182.250000 | 51.750000 | 9446.750000 | 22682.250000 | 44057.500000 | 64.750000 | 63.750000 | 64.750000 | 64.750000 | 64.750000 | 64.750000 | 64.750000 | 64.750000 | 64.750000 | 113.750000 | 289.670500 | 6816.500000 | 444.407500 |
| max | 200.000000 | 37014.000000 | 20235.000000 | 74.000000 | 37015.000000 | 62486.000000 | 163241.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 86.000000 | 4744.000000 | 539.213000 | 10000.000000 | 989.940000 |
Score: 5
Category: statsmodel