Sum-Of-All
Sat 17 May 2025
title: "Sum of All on NA" author: "Rj" date: 2019-04-22 description: "-" type: technical_note draft: false
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
df
| 0 | 1 | 2 | 3 | 4 | |
|---|---|---|---|---|---|
| 0 | 0.051358 | 0.465768 | 0.998450 | 0.131171 | 0.997680 |
| 1 | 0.237126 | 0.703764 | 0.055986 | 0.120710 | 0.489311 |
| 2 | 0.364137 | 0.449693 | 0.803241 | 0.905241 | 0.271881 |
| 3 | 0.620432 | 0.877218 | 0.282262 | 0.633186 | 0.568208 |
| 4 | 0.070414 | 0.098475 | 0.811134 | 0.125991 | 0.547385 |
| 5 | 0.227223 | 0.293223 | 0.299701 | 0.216877 | 0.109066 |
| 6 | 0.806406 | 0.615722 | 0.780990 | 0.354237 | 0.075826 |
| 7 | 0.474298 | 0.062300 | 0.292121 | 0.201447 | 0.662283 |
| 8 | 0.935634 | 0.699771 | 0.814459 | 0.444021 | 0.131643 |
| 9 | 0.601526 | 0.696834 | 0.386316 | 0.795693 | 0.012131 |
# Apply some NA on the existing DF
df.iloc[0:3, 0:4] = np.nan
df
| 0 | 1 | 2 | 3 | 4 | |
|---|---|---|---|---|---|
| 0 | NaN | NaN | NaN | NaN | 0.997680 |
| 1 | NaN | NaN | NaN | NaN | 0.489311 |
| 2 | NaN | NaN | NaN | NaN | 0.271881 |
| 3 | 0.620432 | 0.877218 | 0.282262 | 0.633186 | 0.568208 |
| 4 | 0.070414 | 0.098475 | 0.811134 | 0.125991 | 0.547385 |
| 5 | 0.227223 | 0.293223 | 0.299701 | 0.216877 | 0.109066 |
| 6 | 0.806406 | 0.615722 | 0.780990 | 0.354237 | 0.075826 |
| 7 | 0.474298 | 0.062300 | 0.292121 | 0.201447 | 0.662283 |
| 8 | 0.935634 | 0.699771 | 0.814459 | 0.444021 | 0.131643 |
| 9 | 0.601526 | 0.696834 | 0.386316 | 0.795693 | 0.012131 |
df.loc[:, 'test'] = df.iloc[:, 2:].sum(axis=1)
df
| 0 | 1 | 2 | 3 | 4 | test | |
|---|---|---|---|---|---|---|
| 0 | NaN | NaN | NaN | NaN | 0.997680 | 2.993039 |
| 1 | NaN | NaN | NaN | NaN | 0.489311 | 1.467933 |
| 2 | NaN | NaN | NaN | NaN | 0.271881 | 0.815643 |
| 3 | 0.620432 | 0.877218 | 0.282262 | 0.633186 | 0.568208 | 5.328186 |
| 4 | 0.070414 | 0.098475 | 0.811134 | 0.125991 | 0.547385 | 4.552009 |
| 5 | 0.227223 | 0.293223 | 0.299701 | 0.216877 | 0.109066 | 2.170157 |
| 6 | 0.806406 | 0.615722 | 0.780990 | 0.354237 | 0.075826 | 4.248881 |
| 7 | 0.474298 | 0.062300 | 0.292121 | 0.201447 | 0.662283 | 3.529852 |
| 8 | 0.935634 | 0.699771 | 0.814459 | 0.444021 | 0.131643 | 4.870143 |
| 9 | 0.601526 | 0.696834 | 0.386316 | 0.795693 | 0.012131 | 4.279256 |
Score: 5
Category: data-wrangling